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ABSTRACT

The challenge of multiple comparisons is to maximize
the power for answering specific research questions, while still
maintaining control over the rate of Type 1 error. Several multiple
comparison procedures have been suggested to meet this challenge. The
stagewise protected procedure (SPP) of A. J. Klockars and G. R.
Hancock tests null hypotheses sequentially, with each stage of
testing preceded by an omnibus F-test on the remaining between-group
variability. A modification of this SPP is proposed and tested
through a Monte Carlo simulation. A redirection of the Type I error
rate in protected tests is proposed to be an indirect reference to
the probability that both the omnibus and contrast null hypotheses
will be rejected. Simulation results indicate that the proposed
adjustment of the alpha-level for the stagewise omnibus F-tests
appears to provide the needed power to the original SPP where it was
previously weak, and does so without increasing the Type I error rate
for the experiment beyond the nominal alpha-level. Two tables present
analysis results. (SLD)

o3 ool vle g e vk et o de oo Yoo ook e st Ye de e st ook sk ke de de e e e e ke e dedb e o e e ek ek ek e ek e ek ke ke fe e koy

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
Yoo g v de o ook e de o v dle do o ook S ok vl g ol e o o oe e de dfe e e o ok o e e dte e Fe ok S e ok do ok ook ke de e de dedlo dedde o e e e ok i ke dede dededt ok ke ok




E

U.8. DEPANTMENT OF EDUCATION

Ofe.¢ of Educational Resaarch and Improvement
: “PERMISSION TO REPRODUCE THIS
AT AL R S OURCES INFORMATION MATERIAL HAS BEEN GRANTED BY
This document has been reproduced as &o Iﬁ
;'rfg.u:::l?n:ﬂm the person or orgenizalion Eéb;e)] E ﬁmeock
s e been mudato moroe - Ay R.enhanced stagewise protected procedure for testing
® Poinis of viow of ODirkana nlated nthis docw a complete set of planned orthogonal contrasts

men! do not necessardy reprasent official

OERI position or policy TO THE EDUCATIONAL RESOURCES

Alan J. Klockars, University of Washington INFORMATION CENTER (ERIC)."
Gregory R. Hancock, Auburn University

Background

The challenge of multiple comparisons is to maximize the power for answering specific
research questions while still maintaining control over the rate of Type-I error. In the last 14 years
a number of modified multiple comparison procedures have been suggested to answer this
challenge. Many of these involve the sequential testing of null hypotheses ordered according to the
tenability (i.e., p-values) of their null hypotheses (see Holm,1979). A method offered by
Hochberg (1988) proceeds in a "step-up" manner, sequentially retaining null hypotheses from the
most to the least tenable. Conversely, procedures by Holm (1979) and Shaffer (1986) are "step-
down" in that they seek to reject null hypotheses starting from the least tenable. Klockars and
Hancock (1992) proposed a modification of Shaffer's method, specifically applicable to a complete
set of planned orthogonal contrasts. Their "stagewise protected procedure” (SPP) tested null
hypotheses sequentially, with each stage of testing preceded by an omnibus F-test on the remaining
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between-group variability. The current paper proposes a modification of this SPP.

The SPP offered potential gains in power through the logical implications of the omnibus F-
test (conducted at o=.05) at each stage. Specifically, rejection of an initial omnibus null
hypothesis logically implied that at most j-1 of the j orthogonal contrast null hypotheses could be
true. Using Bonferroni's inequality, the per comparison (per contrast) error rate pursuant to a
rejected omnibus null hypothesis was o/(j-1) rather than o¢j. If the test statistic for the contrast
with the smallest p-value exceeded the corresponding critical value, the experimenter proceeded to
tne next omnibus test, In this stage the experimenter constructed an F-ratio for a partial omnibus
test, the numerator of which consisted of the pooled weatment variance and degrees of freedom
from the remaining j-1 orthogonal contrasts. If this partial omnibus test rejected its null
hypothesis, the experimenter concluded that at most j-2 of the remaining j-1 conirast null
hypotheses could be true. The appropriate per contrast error rate was then a/(j-2). If the contrast
with the second smallest p-value was significant at the 0/(j-2) level, the process continued. Ina
similar manner the variances associated with all remaining contrasts were pooled and the partial
omnibus test evaluated at the .05 level. If judged significant the large st remaining conirast was
evaluated against a reduced critical value, o/(j-i) at the ith stage of testing.

In their simulation of the SPP, Klockars and Hancock showed the method offered more
power than those of Hochberg and Shaffer when there was much overall variation in the groups.
That is, if all four contrasts in the simulation were altered by treatment effects, the SPP provided
considerably more power than other methods simulated -- under all configurations of small,
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medium and large treatrment effects. However, when only one or two of the four contrasts were
altered by treatment effects, the SPP provided considerably less power than other methods
simulated. This lack of power of the SPP with few treatment effects was primarily due to a
conservative level of control over Type-I error. In order for a replication to be judged significant it
nad to reject both the omnibus and the contrast null hypotheses. The effective. Type-I error rate for
the least tenable contrast when the overall omnibus null hypothesis was true (and thus the contrast
null hypothesis was also true) was approximately .035 rather than the nominal .05 level.
Similarly, the Type-I error rate when some (but not all) of the contrast null hypotheses were true
continued to be smaller than the nominal .05 (though the magnitude of the difference was not as
great as with the overall omnibus null hypothesis).

As is the purpose of protected tests, the maximum possible value of the experimentwise
Type-I error rate is determined by the o level of the omnibus test. If ¢ =.05 for the omnibus test,
only 5% of all experiments will produce an omnibus F value (Fg) sufficient to reject the omnibus
null hypothesis when the overall null hypothesis is true. The tests of the largest contrast are only
conducted within that subset of the experiments that rejected the omnibus nuli hypothesis. The
presence of a significant omnibus test does not guarantee that there will be a significant conirast.
When this occurs the total proportion of contrast null hypotheses resulting in Type-I error will be
less than the stated & level of 5%. It is the purpose of this paper to propose a redefinition of the
Type-I error rate in protected tests to be in direct reference to the probability that both the omnibus
and contrast null hypotheses will be rejected. That is, it is proposed herein that the nominal o refer
to the probability of the joint occurrence of the observed omnibus test statistic (Fo™) exceeding a
stated critical value (Fo) and the contrast test statistic (Fc™) exceeding the required critical value
(Fc). Symbolically, then, given that the overall omnibus null hypothesis is true --

o = Pr|(Fo™> Fo)N(Fc™> Fo)l.

Setting Fg and F according to the above criterion allows the experimenter to set the critical values
of the omnibus and contrast tests at o levels greater than the nominal value as long as the joint
probability is maintained at o.. There is a continuum of paired (Fo, Fc) values that would provide
an overall Type-I error rate of a. To eliminate this indeterminacy, the value of Fc is herein defined
as in Klockars and Hancock (1992). That is, Fe for the largest contrast is set at the a-level for the
first contrast conducted when the overall omnibus null hypothesis is rejected -- 0/(j-1), or .05/(4-
1)=.0167 for the case of four orthogonal contrasts. (This would translate to a maximum possible
experimentwise error rate of (4)(.0167)=.0667 if all four contrast null hypotheses were true; but
this would be logically inconsistent with the rejected overall omnibus null hypothesis.) Tests of




additional contrasts within the sequence would be conducted with o similarly defined for the
reduced number of true null hypotheses possible.

The adjusted o-levels and corresponding Fo for the omnibus and partial omnibus tests were
obtained by a Monte Carlo simulation. Using the previously defined values of Fc, the
corresponding Fg values were found such that the joint probability of the omnibus test statistic Fo*
exceeding Fop and the largest contrast test statistic Fo* exceeding F- was .05. With five treatment '
groups, values were needed for the overall omnibus test with four contrasts, and for partial
omnibus tests based on three and two contrasts. The effective o-levels for the omnibus and partial
omnibus tests were found to be .080 for four contrasts, .064 for three contrasts, and .052 for two
contrasts. :

The effect of this modified definition of a on the experimental power was evaluated with a

separate Monte Carlo simulation in which this F-enhanced SPP was compared to the original SPP,
to Shaffer's sequentally rejective Bonferroni procedure, and to a standard Bonferroni procedure '
(for reference). Scores for five groups of n=16 observations were generated in a FORTRAN
program using the Box and Muller {1958) transformation to convert randomly drawn pairs from a
uniform distribution into randorn normal deviates. The treatment sum of squares was partitioned

into the four orthogonal contrasts defined by = Helmert series. Treatment effeccs were created by
the appropriate addition of constants onto the generated scores. A small effect was defined as one
that produced a contrast that was correctly detected by the standard Bonferroni procedure 20% of

the time. Medium and large effects were similarly defined by their power in the standard o
Bonferroni procedure being 50% and 80%, respectively.

Four patterns of treatinent effects were simulated, representing varying amounts of between-
group variance. The first had only one small effect and the remaining three contrasts had true null
hypotheses (NNNS). The second had a small and a medium effect with two true null hypotheses
(NNSM). The third had a small, medium, and large effect along with one true null hypothesis
(NSML). The fourth had a small, two mediurn, and one large effect (SMML). In addition, the
case of four true null hypotheses (NNNN) was simulated. Twenty-thousand replications were run
for each treatment effect configuration.

Results and Discussion

The power of all methods compared under the various simulated treatment effect
configurations are presented in Table 1. The Bonferroni power figures reflect the definitions of the
three magnitudes of treatment effects. The pattern of results for Shaffer and the original SPP
replicates the findings in Klockars and Hancock (1992). The power for detecting treatment effects
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in both the NNNS and NNSM configurations is lower for the original SPP than Shaffer's method,
while the reverse is found as more freatment variability is introduced (NSML and SMML). The
new finding offered by this paper involves the F-enhanced SPP. Specifically, it has essentially
equal or greater power than Shaffer's method under all reatment effect conditions. Where only
one small effect is present (NNNS), the F-enhanced SPP is only ,005 lower than Shaffer. Where
there are more treatment effects the F-enhanced SPP offers up to 4% more power than Shaffer, and
has slightly more power than the original SPP (although this superiority averages less than 1%).

Insert Table 1 about here

The per experiment Type-1 error rates (i.e., the sum of per contrast error rates) for the
simulations are presented in Table 2. These values represent an upper limit for the experimentwise
error rate. As expected the error rates for the F-enhanced SPP are closer to .05. The increased
power of the method, particularly for detecting smaller effects, is accomplished by more closely
matching the observed error rate with the nominal rate.

Insert Table 2 about here

Conclusion
The proposed adjustment of the t-level for the stagewise omnibus F-tests appears to

provide nesded power to the original SPP in those situations where it previously was weak, and
does so without increasing the Type-I error rate for the experiment beyond the nominal ¢-ievel.

This simulation is limited, of course, as it was under:aken only for a particular number of treatment
groups, a particular sample size, and a particular a-level. Further research should be conducted to

assess the impact of the modified SPP in a variety of situations.’

1 A first attempt at constructing a table of required F, values using a Monte Carlo approach is
available from the authors.




Jable 1
p . f muliiol . ]

Configuration Effect = Bonferroni Shaffer  Original SPP  F-enhanced SPP

NNNS Small .189 .193 154 188
NNSM Small .196 215 207 224
Medium 494 .507 .481 .516
NSML Small 196 251 264 271
Medium 496 546 .556 572
Large 800 .822 .828 .840
SMML Small 193 321 360 .361
Medium*  .496 612 650 653
Large .799 854 .378 .880

(*average across two contrasis)

Table 2
Configuration _Bonferroni  Shaffer  Original PP F-enhanced SPP
NNNN 049 .050 036 050
NNNS 040 044 042 050
NNSM 025 .033 035 042
NSML 013 026 035 035
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